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Abstract: Exosomes (EXs), a type of extracellular vesicles secreted from various cells and especially
cancer cells, mesenchymal cells, macrophages and other cells in the tumor microenvironment (TME),
are involved in biologically malignant behaviors of cancers. Recent studies have revealed that
EXs contain microRNAs on their inside and express proteins and glycolipids on their outsides,
every component of which plays a role in the transmission of genetic and/or epigenetic information
in cell-to-cell communications. It is also known that miRNAs are involved in the signal transduction.
Thus, EXs may be useful for monitoring the TME of tumor tissues and the invasion and metastasis,
processes that are associated with patient survival. Because several solid tumors secrete immune
checkpoint proteins, including programmed cell death-ligand 1, the EX-mediated mechanisms are
suggested to be potent targets for monitoring patients. Therefore, a companion therapeutic approach
against cancer metastasis to distant organs is proposed when surgical removal of the primary tumor
is performed. However, EXs and immune checkpoint mechanisms in pancreatic cancer are not fully
understood, we provide an update on the recent advances in this field and evidence that EXs will be
useful for maximizing patient benefit in precision medicine.
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1. Introduction

Pancreatic cancer is classified as a type of intractable, therapy-resistant cancer, and its overall
five-year survival rate has not much changed over the past few decades. Pancreatic cancer is predicted
to be the second-leading cause of cancer-related mortality in the next decade in Western countries [1].
Pancreatic cancer is reported to cause tissue invasion and metastasis to distant organs in the early stage
of carcinogenesis and during clinical diagnosis, tumors are typically already in the advanced stages [2].
However, several research efforts have focused on the effectiveness of immune therapy combined with
surgery, evidence for its use in controlling pancreatic cancer is not enough [3]. Here we update and
focus on the recent advances in the field of immuno-surgical therapeutic strategy for pancreatic cancer,
which was emerged recently in the relevant of extracellular vesicles (EVs) such as exosomes (EXs) [4].

2. Systemic Review of Immune-Surgical Strategies against Pancreatic Cancer

By a systemic review in the PubMed database (https://pubmed.ncbi.nlm.nih.gov), we found
that recent publications of both clinical and nonclinical studies by searching keywords “exosome,”
“miRNA,” and “pancreatic cancer” have emerged as summarized in Tables 1 and 2. By noting recent
scientific advances in this area, in this study, we focus on the clinical aspects of cancer treatment,
especially immune-surgical strategies that monitor the cancer-associated EXs of pancreatic cancer.

https://pubmed.ncbi.nlm.nih.gov
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Table 1. Nonclinical study of exosomes and miRNAs in pancreatic cancer.

Cells, Pathway, System and
Involved Molecules Characterization of Exosomes Characterization of miRNAs

(Functions) References

TLR4, dendritic cells Exosomes isolated
miR-203

[5](miR-203 downregulates TLR4 and downstream cytokines in
dendritic cells)

Regulatory factor X-associated protein
(RFXAP) Exosomes isolated

miR-212-3p [6]
(miR-212-3p inhibits RFXAP)

CD44v6, Tspan8, EpCAM, MET and
CD104, a panel of protein and miRNA NSW

miR-1246, miR-4644, miR-3976 and miR-4306 [7]
(These miRNAs significantly upregulate pancreatic cancer serum

exosomes)

Macrophage (J771.A1) Transfection experiment

miR-155 and miR-125b2

[8]
(miR-155 or miR-125b-2 can achieve stable expression of the

microRNAs and these modified tumor-derived exosomes can
result in macrophages reprogramming in pancreatic tumor

microenvironment)

Cancer-associated fibroblasts, effect of
gemcitabine

Studied by exosome release inhibitor,
GW4869 NSW [9]

ROS, DCK and gemcitabine resistance Conditioned medium

miR-155

[10](miR-155 downregulates DCK and the functional suppression of
miR-155 led to marked abrogation of Gemcitabine

chemoresistance)

Stellate cell-derived exosomes Conditioned medium; suppressed by
GW4869

miR-21-5p and miR-451a
[11](Pancreatic stellate cell-derived exosomes contained a variety of

microRNAs such as miR-451a, miR-21-5p)

C2C12 myotube, insulin resistance, PI3
K/Akt/FoxO1 pathway Conditioned medium miRNAs suggested [12]

SMAD4 Exosomes isolated

miR-494-3p and miR-1260a

[13](miR-494-3p and has-miR-1260a are potential mediators of
SMAD4-associated de-regulated calcium fluxes, and create an

immunosuppressive myeloid cell background)

M2 macrophages, PTEN/PI3K NSW

miR-301a-3p

[14](miR301a-39 induced the M2 polarization of macrophages via
activation of the PTEN/PI3Kγ signaling pathway and promote

malignant behaviors of pancreatic cancer cells)



Cells 2020, 9, 1645 4 of 21

Table 1. Cont.

Cells, Pathway, System and
Involved Molecules Characterization of Exosomes Characterization of miRNAs

(Functions) References

Tumor-associated macrophage,
gemcitabine resistance Rab27 a/b deficient mice

miR-365

[15](Macrophage-derived exosomes as key regulators of gemcitabine
resistance in PDAC and demonstrate that blocking miR-365 can

potentiate gemcitabine response)

GIP, GLP-1, PCSK1/PCSK3 Animal model

miR-6796-3p, miR-6763-5p, miR-4750-3p, and miR-197-3p

[16]
(These miRNAs attenuate the synthesis of GIP and GLP-1 from
STC-1 cells, and suppress the expression of PCSK1/3, which is

responsible for the post-translational processing of Gip
and proglucagon)

TGF-β Serum (467 miRNAs, including 7 overexpressed and 460
underexpressed miRNAs) [17]

Proof-of-concept study in mice,
preclinical animal model

Using magnetic nanopore

11 miRNAs

[18](A panel of extracellular vesicle may be miRNA blood-based
biomarkers that can detect pancreatic cancer at a

precancerous stage)

Pancreatic stellate cells (PSCs), ACTA2 Conditioned medium

miR-1246 and miR-1290

[19](Pancreatic cancer cells increase the expression of miR-1246 and
miR-1290 in PSCs. Overexpression of miR-1290 induces the

expression of ACTA2 and fibrosis-related genes in PSCs)

Cancer-initiating cells, CD44v6 and
Tspan8, reprogramming Knockdown experiments NSW [20]

Cancer-associated fibroblasts, TP53INP1 Conditioned medium
miR-106b

[21](miR-106b promotes GEM resistance of cancer cells by directly
targeting TP53INP1)

AMAD9, bone marrow mesenchymal
stem cells

Cocultured
miR-126-3p

[22](miR-126-3p was observed to suppress pancreatic cancer through
downregulating ADAM9)

ZNF689 Conditioned medium

miR-339-5p

[23](miR-339-5p suppresses the invasion and migration of pancreatic
cancer cells via direct regulation of ZNF689)
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Table 1. Cont.

Cells, Pathway, System and
Involved Molecules Characterization of Exosomes Characterization of miRNAs

(Functions) References

RNU2-1 in spliceosome Conditioned medium

miR-1246

[24](miR-1246 is considered an oncomiR in various cancer types.
Exosome miR-1246 is derived from RNU2-1 degradation through a

non-canonical microRNA biogenesis process)

Bone marrow mesenchymal stem cells Exosomes isolated

miR-1231

[25](The exosomes extracted from bone marrow mesenchymal stem
cells with high level of miR-1231 inhibit the activity of

pancreatic cancer)

TGF-BR3-mediated TGF-β signaling,
tumor-associated macrophage Exosomes isolated

miR-501-3p

[26]
(M2 macrophage-derived exosomal miR-501-3p inhibits tumor

suppressor TGFBR3 gene and facilitates the development of PDAC
by activating the TGF-β signaling pathway, which provides novel

targets for the molecular treatment of PDAC)

Cancer stem cells, gemcitabine resistance Exosomes isolated

miR-210

[27](Exosomes derived from GEM-resistant pancreatic cancer stem
cells mediate the horizontal transfer of drug-resistant traits to
GEM-sensitive pancreatic cancer cells by delivering miR-210)

Dying tumor cells, radiotherapy Exosomes isolated
miR-194-5p

[28](Exosomal miR-194-5p enhanced DNA damage response in tumor
repopulating cells to potentiate tumor repopulation)

NSW—not studied well; miR—miRNA; PDAC—pancreatic ductal adenocarcinoma; GEM—gemcitabine.
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Table 2. Clinical significance of exosomes and miRNAs in pancreatic cancer.

Cells, Pathway, System and
Involved Molecules

Clinical Endpoints, Merits and
Comments

Characterization of
Exosomes

Characterization of miRNAs
(Functions) References

Salivary exosome 12 patients and 13 controls Exosomes isolated
miR-1246 and miR-4644

[29](miR-1246 and miR-4644 in salivary exosomes could be
candidate biomarkers for pancreatobiliary tract cancer)

Plasma
Stage I–IIA, n = 15; healthy

subjects (n = 15); diagnosis of
localized pancreatic cancer

NSW

miR-196a and miR-1246

[30](miR-196a and miR-1246 are highly enriched in pancreatic
cancer exosomes and elevated in plasma exosomes of

patients with localized pancreatic cancer)

Circulating exosomes are
superior to exosomal glypican-1

29 cases studied for diagnosis Exosomal miR studied

High miR-10b, miR-21, miR-30c and miR-181a; low
miR-let7a

[31](High exosomal levels of miR-10b, miR-21, miR-30c and
miR-181a and low miR-let7a readily differentiate PDAC
from normal control and chronic pancreatitis samples)

Gemcitabine resistance A cohort Exosomes isolated

miR-155

[32](The increase of miR-155 induced exosome secretion and
chemoresistance ability via facilitating the

anti-apoptotic activity)

Biomarker
16 pancreatic cancer, 18

pancreatitis patients and
20 controls

Exosomes isolated from
serum

miR-23b-3p

[33](Overexpression of miR-23b-3p promoted proliferation,
migration and invasion capability of pancreatic cancer

cells in vitro)

Tumor-associated stroma A cohort Exosomes isolated
miR-145 [34]

(miR-145-5p exerts an antitumor role in PDAC)

Circular RNA (circ-RNA),
MACC/MET/ERK or AKT

pathways
A cohort Plasma Circ-PDE8A acting as a ceRNA for miR-338 [35]

p53, TGF-β
Training (40 tumors; 40

controls), testing (112; 116),
external validation (41; 50)

Plasma

miR-122-5p, miR-125b-5p, miR-192-5p, miR-193b-3p,
miR-221-3p, and miR-27b-3p

[36]

(These miRNAs may involve in several molecular
pathways closely related with p53 signaling pathway,

TGF-beta signaling pathway, etc. These miRNAs could act
as a non-invasive biomarker in diagnosis and prognosis of

pancreatic cancer.)
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Table 2. Cont.

Cells, Pathway, System and
Involved Molecules

Clinical Endpoints, Merits and
Comments

Characterization of
Exosomes

Characterization of miRNAs
(Functions) References

p27 A cohort NSW

miR-222

[37](Tumor-generated exosomes could promote invasion and
proliferation of neighboring tumor cells via

miR-222 transmission)

miR-196b, LCN2 and TIMP1 Familial pancreatic cancer NSW

miR-196b

[38]
(The combination miR-196b/LCN2/TIMP1 may be a

promising biomarker set for the detection of high-grade
PDAC precursor lesions in individuals at risk of familial

pancreatic cancer families)

A set of three miRs 32 patients, 29 IPMN,
22 controls

Serum

miR-191, miR-21 and miR-451a

[39]
(The level of three miRNAs enclosed in serum exosomes
can serve as early diagnostic and progression markers of
pancreatic cancer and IPMN and considered more useful

markers than the circulating miRs)

Minimally invasive biomarker Identified in 6 patients and
validated in 50 patients Plasma

miR-451a

[40](Exosomal miR-451a levels may be a useful minimally
invasive biomarker for the prediction of recurrence and

prognosis in PDAC patients)

Panel diagnosis by six miRs A cohort of 30 cancer and
30 controls

Serum

let-7b-5p, miR-192-5p, miR-19a-3p, miR-19b-3p,
miR-223-3p and miR-25-3p

[41](These six-miRNA panel in the serum for pancreatic
cancer may lead to early and noninvasive diagnosis)

Pancreatic juice samples, CD63,
CD81 and TSG101

27 patients and 8 controls Exosomes isolated

miR-21 and miR-155

[42](Exosomal miRNAs, including ex-miR-21 and ex-miR-155,
in pancreatic juice may be developed as biomarkers

for PDAC)

miRs in portal vein blood (PVB) 55 patients Exosomes isolated

miR-4525, miR-451a and miR-21

[43](miR-4525, miR-451a and miR-21 in PVB are potential
biomarkers identifying patients at high-risk for recurrence

and poor survival in resected PDAC patients)
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Table 2. Cont.

Cells, Pathway, System and
Involved Molecules

Clinical Endpoints, Merits and
Comments

Characterization of
Exosomes

Characterization of miRNAs
(Functions) References

Epithelial-to-mesenchymal
transition

Cancer Genome Atlas (TCGA)
data set and a cohort

Exosomes isolated
from serum

miR-196b-3p and miR-204-3p

[44](Serum exo-miRNA biomarkers (miR-196b-3p and
miR-204-3p) potentially identify the pancreatic tumor

status through less-invasive methods)

Urine exosomes A cohort Exosomes isolated

miR-3940-5p/miR-8069 Ratio

[45](The miR-3940-5p/miR-8069 ratio in urine exosomes may
be useful as a tool for the diagnosis of PDAC, particularly

when used in combination with CA19-9)

Biomarker for the early
diagnosis, nanoparticle biochip

36 patients and 65 controls Exosomes isolated from
plasma

miR-21

[46]
(Evaluating exosomal miR-21 using the tethered cationic

lipoplex nanoparticle biochip may be a useful
non-invasive strategy for diagnosing early stage

pancreatic cancer)

NSW—not studied well; miR—miRNA; PDAC—pancreatic ductal adenocarcinoma.
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3. Cellular Exosomes in Pancreatic Cancer

Recent advances in research have resulted in the emergence of precision medicine. However,
cancer is a genetic disease, in which tumor-restricting, tumor-suppressor genes and growth-promoting
oncogenes are mutated [47], recent research has revealed that cancer cells can actively secrete EVs,
including EXs and microvesicles, which are cell-to-cell mediators of metastasis [48].

The involvement of EVs is not limited to cancer cells but extends to other cells of the tumor
environment as well, including cancer-associated fibroblasts [49], endothelial cells [50], mesenchymal
cells [51], myeloid-derived suppressor cells [52], endothelial progenitor cells [52], a subclass of
macrophages [53], antigen-presenting cells [54] and neural cells [55].

Moreover, EVs are reportedly involved in other diseases than cancer, such as modulating metabolic
diseases, like type 2 diabetes mellitus [56], amyotrophic lateral sclerosis [57], heart failure [58] and
stroke [59]. It is known that these secreted EVs are circulated in peripheral blood, so considerable
efforts have focused on the possibility that the clinical examination of EVs may be useful for diagnosing
and monitoring human diseases [60].

The EVs are likely involved in cellular signal transduction or cell-to-cell communications in
diseases of pancreas. For examples, a previous report showed that c-Met/hepatocyte growth factor
receptor and PDL1 expression in circulating EXs in peripheral blood could be used as a diagnostic
and prognostic marker for pancreatic cancer [61], but more accurate approaches for disease diagnosis
must be developed. Indeed, it has been proposed that, after the surgical removal of primary tumors,
immune checkpoint medicine may target marginal invasions in the surrounding tissues and distant
organs [62]. Thus, understanding the mechanism of therapy resistance in pancreatic cancer in relation
to the tumor microenvironment or immune microenvironment is necessary.

4. Bacterial Exosomes in Pancreatic Cancer

Bacterial EVs are studied as a new way to decipher the host–microbiota communications in
inflammatory dermatoses [63], colitis [64], intestinal barrier dysfunction [65] and diabetes [66].
However, the precise mechanism remains to be elucidated, the interaction between gut microbes
and leaky gut epithelium will increases the uptake of macromolecules like lipopolysaccharide or
pro-inflammatory substances from the membranes of microbes leading to chronic inflammation [66].
The recent study indicated that the pancreatic cancer microbiome can promote oncogenesis by induction
of innate and adaptive immune suppression, and bacterial ablation was associated with immunogenic
reprogramming in pancreatic TME, with a reduction in myeloid-derived suppressor cells and an increase
in M1 macrophage differentiation, leading to an efficacy for checkpoint-targeted immunotherapy by
upregulating PD-1 expression [67]. However, an involvement of EXs remains to be elucidated, it is
suggested that microbiota can promote the crippling immune-suppression characteristic of pancreatic
cancer, being a potential therapeutic target of the disease [67].

5. Exosomes-mediated Immunity in Pancreatic Cancer

Immunotherapy targeting immune checkpoints has emerged as beneficial for patients with diseases
involving the T-cell response system, such as replication-error-prone colorectal [68], esophageal [69]
and skin cancers [70]. As a result, the scientific community has become interested in the relevance
of immunotherapy in uncharacterized tertiary lymphoid structures [71] as well as various aspects of
cell-to-cell communication, including humoral factors, such as cytokines and chemokines [72] and
recently in EVs [73]. Given that the original report indicated the involvement of programmed cell
death-ligand 1 (PDL1) on tumor cells in the escape from host immune system [74], Some studies
have focused in particular on the response to anti-PDL1 therapy [75] and antitumor immunity and
memory [76].

It is shown that chemoattractant proteins such as (C–X–C motif) ligand 2 (CXCL2), CXCL8, and
CXCL16 were found in cellular EV proteome [77]. The secretome including soluble proteins and
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extracellular vesicles are highlighted as an acellular regenerative therapy for liver disease [78]. EVs are
as expected from the nature of EVs, the recent study indicates that EVs or EV-like nanovesicles will
be useful for the potential therapeutic usage as a prospective immunosuppressant, and proposed the
possible usage of dual-targeting vesicles, composed of programmed cell death-ligand 1/programmed
cell death 1 (PD-L1/PD-1) and cytotoxic T-lymphocyte-associated protein 4/cluster of differentiation 80
(CTLA-4/CD80) [79].

6. Exosomes Secretion and Cell-to-Cell Communications in Pancreatic Cancer

EXs, a type of EVs with a diameter of 50–150 nm, are secreted from many cells in health and diseases,
including cancer, mesenchymal and immune cells, as mentioned above [49–51,53–55]. However,
DNA has been much less studied as an EV macromolecular component than the others, some
publications already mention DNA as an EV/EX component. The previous study demonstrate the
importance of future therapeutic potential and correct design of treatment interventions to identify
the compartment and mechanisms by which specific DNA, RNA, and proteins are secreted in human
disease [80]. It means that the matter is still open for discussion and a different mechanism is already
suggested for cell–DNA release. Therefore, it may perhaps be wise not to be so affirmative about
dsDNA and EXs, but rather to stress, as suggested, the imperative need for a reassessment of EX/EV
composition before any further therapeutic use.

A recent very interesting study studied EXs composition and found important differences with
the many published EX cargo compositions, especially with regard to DNA, together with a lack of
cytoskeletal elements and glycolysis enzymes [80], suggesting that EX loading is highly regulated
process [81], which may be useful in drug delivery for silencing BCR–ABL fusion gene of chronic
myelogenous leukemia or for silencing RAD51 and RAD52 [82–84]. This finding stresses the imperative
needed reassessment of EX/EV composition before any further therapeutic use.

As EX surface contains lipids and proteins derived from cell membranes, and the EX interior
contains intracellular substances and biomaterials such as miRNAs, mRNA and proteins, EXs are
claimed to be involved in cell-to-cell communication between close and distant cells in various tissues,
including cancer cells [85]. miRNAs in EXs are free of Argonaute (Ago) 2 protein, and more than
90% of Ago protein-bounded miRNAs are independent of EVs, suggesting exosomal miRNA is
completely independent of miRNA-induced silencing complex (miRISC), and possesses a possible
unique function [86,87]. Taken together, EXs secreted from cancer cells have been suggested to be
involved in cancer cell survival, malignant transformation, and metastasis and function to favor cancer
cells [88].

On the other hand, in the immune system, EXs secreted from some cells function as
antigen-presenting vesicles and induce antitumor immunity responses and immune tolerance,
which suppress inflammation [89]. In a previous study using state-of-the-art technology for isolation,
EXs secreted from cells were demonstrated to mimic somewhat the characteristics of the cells that
secrete them and were observed in body fluids, where they have attracted attention as being useful
for diagnosing diseases [90]. Diagnosis based on the presence of cancer cells in body fluids and
components derived from them is called liquid biopsy, and EX use as diagnostic markers has also been
suggested [91].

7. Exosomes Carry miRNAs Inside in Pancreatic Cancer

Several biomaterials and metabolic substances are contained inside EXs, including long non-coding
RNAs or, the short form, miRNA [85].

7.1. miRNAs

Because miRNAs inhibit the process of transcription and translation [88], certain miRNAs have been
proposed as being involved in the process of gene function regulating growth promotion, chemotherapy
resistance, cancer invasion and metastasis, which are useful for diagnosing and monitoring the disease.
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Extensive efforts have been made to identify miRNAs as therapy-relevant companion diagnostic tools
and novel therapeutic targets [89–91]. High-speed, next-generation sequencing has facilitated the
process of research and development, which indicated that critical functions of miRNAs are dependent
on the tissue-specific expression of miRNAs as well as downstream networks. Previous expression
analysis allowed for the identification of miR-1246 from gemcitabine-resistant pancreatic cancer cells,
with high expression in pancreatic cancer, but abnormal counterparts and subsequent analysis using
expression profiling of pancreatic cancer cells demonstrated that cyclin G2 [92] is the target of miR-1246
in the downstream networks [93]. Moreover, recent studies indicated that miR-1246 is involved in
tumor immunity by reprogramming macrophages to tumor-supporting macrophages via exosomal
miR-1246 in mutant p53 cancers [94]. Interestingly, a methyltransferase of RNAs, METTL3, was shown
to promote metastasis of colorectal cancer via the miR-1246/SPRED2/MAPK signaling pathway [95].
However, the relevance of this network in pancreatic cancer has not yet been demonstrated, despite
the critical role that METTL3 plays in pancreatic cancer [96]. Accordingly, the precise profiling of
single-cell-level approaches would be able to identify the cell-to-cell communications in the tumor
microenvironment and truly useful bona fide biomarkers (Figure 1). Moreover, the previous original
report indicated that miRNAs silencing by the attachment of peptide nucleotide acid antimiRs to a
peptide provided a novel construct that could target tumor microenvironments, which is effectively
inhibit especially the miR-155, suggesting broad impacts on the field of targeted drug delivery [97].
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8. Significance of Exosomal PDL1 in Pancreatic Cancer 

Figure 1. Exosomes can transfer information via cell-to-cell communications. Exosomes (EXs) are
membrane vesicles secreted from many kinds of cells. EXs contain various secretory cell-derived
proteins and RNA, including endosome-derived proteins, proteins involved in intracellular transport
and cell membrane-derived proteins. In addition, they contain lipids derived from the cell membrane of
endocrine cells and endosomal membranes. EXs taken up by the target cells fuse with their endosomal
membrane to release the contained RNAs into the cytoplasm of the target cells. A released mRNA is
translated into a protein, whereas the miRNAs suppress the translation of the target gene and thus EXs
control the gene expression in the target cell. In addition, these EXs components are different from
those in EX secretory cells. Therefore, a specific mechanism by which EX proteins and mRNA/miRNA
are selectively loaded into EXs was suggested.

7.2. Measurements of Epigenetic Information

Epigenetic information contained in DNA exclusively includes the methylation of cytosine at
the 5′ position (5mC), which exerts the control function of the downstream gene expression in the
promoter and enhancer levels [98]. Nevertheless, epigenetic information in RNA was elusive until
state-of-the-art technology was developed to measure the precise position in the sequence and actual
modifications [99]. The application of modified mass spectrometry analysis allowed the identification
of methylation information of miRNAs, suggesting its usefulness in biomarker screening in the early
phases of pancreatic cancer [100].
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8. Significance of Exosomal PDL1 in Pancreatic Cancer

EXs are secreted from cells via the endosome and multivesicular body, in which RAB27A [101]
and neutral sphingomyelinase 2 (N-SMase2), a phosphoprotein exclusively phosphorylated at the
serine residues [102], are involved, the EX surface is naturally considered to be highly relevant to the
original cells in terms of the density of phospholipids and proteins, as well as major histocompatibility
complex and other antigens [73]. The inhibition of RAB27A and N-SMase2 has demonstrated the
importance of surface expression [73].

8.1. Exosomal PDL1 in Pancreatic Cancer

A previous study reviewed the importance of exosomal and soluble PDL1, a ligand for PD1
receptor in many solid tumors. However, its role in pancreatic cancer remains to be investigated.
A recent study indicated that, although no specific difference was detected between the PDL1 amounts
in pancreatic cancer patients and in compared patients with chronic pancreatitis and benign serous
cystadenoma of the pancreas, PDL1-positive pancreatic cancer patients had a significantly shorter
postoperative survival time, suggesting the usefulness of PDL1 as a marker of prognosis [61].

8.2. Immuno-Diagnosis and Companion Diagnostics of Pancreatic Cancer

Although the technology used to detect tumor immunological information by EXs likely needs
to be more specific, tumor tissue examination has elucidated the involvement of PD1, PDL1, CD8
and FOXP3 [103,104]. Moreover, PDL1 expression was determined to be a poor prognostic factor in
patients with high infiltration of CD8 lymphocytes [105,106].

9. Exosomes Express PDL1 Outside

9.1. Immune Checkpoints

The immune system activates T cells to distinguish cancerous, infected or foreign cells from
normal somatic cells and also activates T cells by fine-tuning the checkpoints to monitor healthy cells
and recognize and eliminate unhealthy or xenogeneic cells [107]. Cancer cells use not only regulatory
T cells and myeloid-derived suppressor cells but also immune checkpoint molecules for immunization
in order to avoid attacks from the immune system [108]. The suppressive function is also actively
used to escape the immune system regulation. Many cancer cells have a mechanism whereby they are
not detected by the immune system and thus grow uncontrolled. For example, some cancers express
surface ligands, such as PDL1, that bind to T cells and suppress their activity, allowing them to avoid
detection by the immune system [107].

9.2. PD1 and PDL1

Whereas PD1 is a receptor that belongs to the CD28 family, which is expressed on activated T cells
and myeloid cells, and is also an immune checkpoint molecule, PDL1 is an immune checkpoint protein
that acts as a co-suppressor, which suppresses or arrests T-cell responses, and is usually expressed on
the surface of antigen-presenting cells [107].

When PDL1 binds to PD1, cytokine production from T cells is reduced, and signals suppressing
T-cell activity are transmitted. Tumor cells use this immune checkpoint signaling to escape recognition
from T cells in tumors as well as infectious diseases [109]. PDL1 is also strongly expressed on the cell
surface of tumor cells and non-transformed cells present in the tumor microenvironment [110]. Activity
is suppressed when PDL1 binds to PD1 on the surface of activated cytotoxic T cells. The inactivated
T cells then remain in the tumor microenvironment without migrating. Such PD1/PDL1-mediated
mechanisms manage the resistance of tumor cells to tumor immunity. Clinical studies on the
administration of anti-PD1/PDL1 antibodies [111,112] are investigating whether cancer immunotherapy
can reduce such resistance to tumor immunity and maintain the immune response to the tumor.
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The study of EXs in solid tumors, such as prostate cancer, has indicated that cancer cells express
exosomal PDL1, which interacts with PDL molecules on T cells, resulting in the exhaustion of the T-cell
response [76]. Exosomal PDL1 was shown to be induced by the tumor microenvironment [75]. Exposure
of interferon gamma from T cells stimulates the expression of PDL1 molecules and their secretion on
EXs in cancer cells. But, how the tumor microenvironment (i.e., hypoxia, low nutrition, abnormal
vasculature, epithelial–mesenchymal condition) is involved in PDL1 expression and which factors play
a role in the cleavage and secretion of the soluble or extracellular form of PDL1 molecules remain to be
fully understood. However, the development of a sophisticated centrifuge-based EV separation allows
now to precisely analyze EVs, EXs, and the soluble and extracellular forms of proteins [73] Figure 2).
Further studies characterizing the tumor microenvironment are needed to maximize the antitumor
effects of immune checkpoint inhibitors [113] and to develop new technologies to antagonize exosomal
PDL1 in immunotherapy-resistant tumors of the lung [114], breast [115], stomach [116] and head and
neck [117], as well as in noncancerous conditions such as periodontitis [118].
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PDL1 expressed on cancer cells or antigen-presenting cells, T-cell activation is suppressed, and immune
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10. Maximized Surgical Outcome by Immune Strategy against Pancreatic Cancer

To overcome the lethality of pancreatic cancer, the unmet medical needs include (1) detection and
diagnosis of early stages of the tumor, (2) elucidation of how this tumor adapts the escape mechanism(s)
from immune surveillance and (3) further study of the mechanism that is exploited therapeutically
in combination with immune checkpoint inhibitors, such as PD1, PDL1 and CTLA4. Nucleotide
sequencing and modification detection of exosomal miRNAs will be beneficial in liquid biopsy during
the diagnosis of early stages of pancreatic cancer [100,119]. In addition, monitoring exosomal RNAs
will be useful for the early detection of recurrence or metastasis of tumors. In addition, measurement of
the EX particle surface will provide such diagnostic information as blood- or urine-based biomarkers,
although state-of-the-art technologies have only recently emerged [120]. Moreover, studies using
surveillance of malignant transformations in tumors [121] and non-cancerous conditions of the
pancreas [122] have shown that the resident memory T (Trem) cells play a role in maintaining tissue
homeostasis. Given that transforming growth factor-β (TGF-β) is involved in Trem cell activation [123]
and exosomal PDL1 secretion [73], it is likely that a metastasis-prone condition such as the induction
of the epithelial-to-mesenchymal transition or the tumor-nested condition is formed in the tumor
microenvironment elicited by TGF-β [124], though this mechanism is not yet fully understood.
Furthermore, exosomal PDL1 may be involved in the expression of the robustness of the tumor
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microenvironment. This mechanism is exploited therapeutically after the surgical removal of primary
tumors and is modulated by nodal involvement, such as tertiary lymphoid nodal structures [71].
However, further studies in pancreatic cancer are necessary.

11. Conclusions

Given that pancreatic cancer is still associated with a very poor prognosis and is resistant to
chemo–radiation therapy and because the morbidity rank is increasing especially in the Western world,
much emphasis should be placed on the research about the development steps of pancreatic cancer.
Recent advances in these fields include an increased understanding of EX biology, development of
improved measurement methods for miRNAs early diagnosis techniques, comprehensive integration
of knowledge of the tumor immune microenvironments and further development of an efficient
strategy of combination therapies. The application of cancer EX monitoring into the immuno-surgical
strategy of pancreatic cancer is plausible for use in precision medicine in a near future.
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